Théorème : Théorème de transfert, 1ère partie
Soit $(X,Y)$ un couple de variables aléatoires définies sur un espace probabilisé $(\Omega,\mathcal{A},\mathbb{P})$. Soit $g\colon U\to\R$ où $X(\Omega)\times Y(\Omega)\subset U\subset\R^{2}$. On pose : $Z=g(X,Y)$. Alors $Z$ est une variable aléatoire dont la loi est donnée par : $$\ds Z(\Omega)=\left\{ g(x,y)\mid(x,y)\in X(\Omega)\times Y(\Omega)\right\}$$ $$\ds\forall z\in Z(\Omega),\;\mathbb{P}(Z=z)=\sum_{\substack{x\in X(\Omega) \\ y\in Y(\Omega) \\ g(x,y)=z}}{\mathbb{P}([X=x]\cap[Y=y])}$$ De plus : $$\ds\mathcal{A}_{Z}\subset\mathcal{A}_{(X,Y)}$$ En particulier, $X+Y$, $XY$, $\inf(X,Y)$ et $\sup(X,Y)$ sont des variables aléatoires.
Exemples
Théorème : Théorème de transfert, 2nde partie
Soit $(X,Y)$ un couple de variables aléatoires définies sur un espace probabilisé $(\Omega,\mathcal{A},\mathbb{P})$. Soit $g\colon U\to\R$ où $X(\Omega)\times Y(\Omega)\subset U\subset\R^{2}$. On pose $Z=g(X,Y)$.
Exemple
Soit $X$ et $Y$ deux variables aléatoires indépendantes d'un même espace probabilisé $(\Omega,\mathcal{A},\mathbb{P})$ et suivant toute la même loi $\mathcal{G}(p)$. On pose : $S=\sup(X,Y)$ et $I=\inf(X,Y)$.