Outils pour utilisateurs

Outils du site


math:2:lois_usuelles_densite

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
math:2:lois_usuelles_densite [2020/06/14 21:34]
Alain Guichet [Loi exponentielle]
math:2:lois_usuelles_densite [2020/06/14 21:44] (Version actuelle)
Alain Guichet [Loi normale]
Ligne 172: Ligne 172:
 __**Remarques**__ __**Remarques**__
  
-  * On admet que :\\ $$\ds\int_{-\infty}^{+\infty}{\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-\frac{x^{2}}{2}}\mathrm{d} x}=1$$ +  * On admet que : $$\ds\int_{-\infty}^{+\infty}{\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-\frac{x^{2}}{2}}\mathrm{d} x}=1$$ 
-  * On en déduit que :\\ $$\ds\Gamma\left(\frac{1}{2}\right)=\int_{0}^{+\infty}{\frac{\mathrm{e}^{-t}}{\sqrt{t}}\mathrm{d} t}=\sqrt{\pi}$$+  * On en déduit que : $$\ds\Gamma\left(\frac{1}{2}\right)=\int_{0}^{+\infty}{\frac{\mathrm{e}^{-t}}{\sqrt{t}}\mathrm{d} t}=\sqrt{\pi}$$
  
  
Ligne 186: Ligne 186:
  
   * On dit qu'une variable aléatoire $X$ suit la **loi normale centrée réduite** (ou encore loi de Gauss) si et seulement si l'une de ses densités est la fonction $\ds x\mapsto\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-\frac{x^{2}}{2}}$ (souvent notée $\varphi$) et on note : $X\hookrightarrow\mathcal{N}(0,​1)$.   * On dit qu'une variable aléatoire $X$ suit la **loi normale centrée réduite** (ou encore loi de Gauss) si et seulement si l'une de ses densités est la fonction $\ds x\mapsto\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-\frac{x^{2}}{2}}$ (souvent notée $\varphi$) et on note : $X\hookrightarrow\mathcal{N}(0,​1)$.
-  * La fonction de répartition $F_{X}$ de $X$ est souvent notée $\Phi$ :\\ $$\ds\forall x\in\R,​\;​\Phi(x)=\mathbb{P}(X\leqslant x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}{\mathrm{e}^{-\frac{t^{2}}{2}}\mathrm{d} t}$$+  * La fonction de répartition $F_{X}$ de $X$ est souvent notée $\Phi$ : $$\ds\forall x\in\R,​\;​\Phi(x)=\mathbb{P}(X\leqslant x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}{\mathrm{e}^{-\frac{t^{2}}{2}}\mathrm{d} t}$$
  
 </​box>​ </​box>​
Ligne 200: Ligne 200:
 <box 100% red round | **Théorème : Propriété fondamentale de la fonction de répartition Φ**> <box 100% red round | **Théorème : Propriété fondamentale de la fonction de répartition Φ**>
  
-Soit $X\hookrightarrow\mathcal{N}(0,​1)$. Alors :\\ $$\ds\forall x\in\R,​\;​\Phi(-x)=1-\Phi(x)$$+Soit $X\hookrightarrow\mathcal{N}(0,​1)$. Alors : $$\ds\forall x\in\R,​\;​\Phi(-x)=1-\Phi(x)$$
  
 </​box>​ </​box>​
Ligne 236: Ligne 236:
 m=10 m=10
 s=[1:n] s=[1:n]
-x=[-5:​0.001:​25]'​+x=[-5:​0.001:​25]' ​
 y=zeros(x*s) ; z=zeros(y) y=zeros(x*s) ; z=zeros(y)
 for k=[1:n] for k=[1:n]
math/2/lois_usuelles_densite.txt · Dernière modification: 2020/06/14 21:44 par Alain Guichet