Outils pour utilisateurs

Outils du site


math:2:derive

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
math:2:derive [2020/05/12 09:40]
Alain Guichet [Différentes formules de Taylor]
math:2:derive [2020/05/12 09:41] (Version actuelle)
Alain Guichet [Différentes formules de Taylor]
Ligne 226: Ligne 226:
 __**Remarque : **__\\ __**Remarque : **__\\
 Si $f$ est de classe $\mathcal{C}^1$ au voisinage de $x$ alors : $$\begin{array}{rcl} \ds\frac{f(x+h)-f(x)}{h} & \underset{h\to0}{=} & \ds\frac{f(x)+f'​(x)h+o(h)-f(x)}{h} \\ & \underset{h\to0}{=} & \ds\frac{f'​(x)h+o(h)}{h} \\ & \underset{h\to0}{=} & f'​(x)+o(1) \end{array}$$ Si $f$ est de classe $\mathcal{C}^2$ au voisinage de $x$ alors : $$\begin{array}{rcl} \ds\frac{f(x+h)-f(x-h)}{2h} & \underset{h\to0}{=} & \ds\frac{[f(x)+f'​(x)h+\frac12 f''​(x)h^2+o(h^2)]-[f(x)-f'​(x)h+\frac12 f''​(x)h^2+o(h^2)]}{2h} \\ & \underset{h\to0}{=} & \ds\frac{2f'​(x)h+o(h^2)}{2h} \\ & \underset{h\to0}{=} & f'​(x)+o(h) \end{array}$$ On en déduit que l'​approximation du nombre dérivé est bien meilleure par cette seconde méthode. On peut tester le code Scilab qui suit pour s'en convaincre : Si $f$ est de classe $\mathcal{C}^1$ au voisinage de $x$ alors : $$\begin{array}{rcl} \ds\frac{f(x+h)-f(x)}{h} & \underset{h\to0}{=} & \ds\frac{f(x)+f'​(x)h+o(h)-f(x)}{h} \\ & \underset{h\to0}{=} & \ds\frac{f'​(x)h+o(h)}{h} \\ & \underset{h\to0}{=} & f'​(x)+o(1) \end{array}$$ Si $f$ est de classe $\mathcal{C}^2$ au voisinage de $x$ alors : $$\begin{array}{rcl} \ds\frac{f(x+h)-f(x-h)}{2h} & \underset{h\to0}{=} & \ds\frac{[f(x)+f'​(x)h+\frac12 f''​(x)h^2+o(h^2)]-[f(x)-f'​(x)h+\frac12 f''​(x)h^2+o(h^2)]}{2h} \\ & \underset{h\to0}{=} & \ds\frac{2f'​(x)h+o(h^2)}{2h} \\ & \underset{h\to0}{=} & f'​(x)+o(h) \end{array}$$ On en déduit que l'​approximation du nombre dérivé est bien meilleure par cette seconde méthode. On peut tester le code Scilab qui suit pour s'en convaincre :
-<code=scilab>+<code=Scilab>
 function y=f(x) function y=f(x)
     y=exp(x)     y=exp(x)
math/2/derive.txt · Dernière modification: 2020/05/12 09:41 par Alain Guichet